Skip to main content Skip to secondary navigation
Attention - Under Development

Migrating from

legacy TIMES website
Journal Article

Nonadiabatic bulk-surface oscillations in driven topological insulators

Recent theoretical and experimental work has suggested the tantalizing possibility of opening a topological gap upon driving the surface states of a three-dimensional strong topological insulator (TI) with circularly polarized light. With this motivation, we study the response of TIs to a driving field that couples to states near the surface. We unexpectedly find coherent oscillations between the surface and the bulk and trace their appearance to unavoidable resonances caused by photon absorption from the drive. We show how these resonant oscillations may be captured by the Demkov-Osherov model of multilevel Landau-Zener physics, leading to nontrivial consequences such as the loss of adiabaticity upon slow ramping of the amplitude. We numerically demonstrate that these oscillations are observable in the time-dependent Wigner distribution, which is directly measurable in time-resolved angle-resolved photoemission spectroscopy (ARPES) experiments. Our results apply to any system with surface states in the presence of a gapped bulk, and thus suggest experimental signatures of a generic surface-bulk coupling mechanism that is fundamental for proposals to engineer nontrivial states by periodic driving.

Author(s)
Michael Kolodrubetz
Benjamin M. Fregoso
Joel E. Moore
Journal Name
Physical Review B
Publication Date
November 14, 2016
DOI
10.1103/PhysRevB.94.195124