Skip to main content Skip to secondary navigation
Attention - Under Development

Migrating from

legacy TIMES website
Journal Article

Orbitally selective resonant photodoping to enhance superconductivity

Signatures of superconductivity at elevated temperatures above Tc in high-temperature superconductors have been observed near 1/8 hole doping for photoexcitation with infrared or optical light polarized either in the CuO2 plane or along the c axis. While the use of in-plane polarization has been effective for incident energies aligned to specific phonons, c-axis laser excitation in a broad range between 5 μm and 400 nm was found to affect the superconducting dynamics in striped La1.885Ba0.115CuO4, with a maximum enhancement in the 1/ω dependence to the conductivity observed at 800 nm. This broad energy range, specifically 800 nm, is not resonant with any phonon modes, yet induced electronic excitations appear to be connected to superconductivity at energy scales well above the typical gap energies in the cuprates. A critical question is, What can be responsible for such an effect at 800 nm? Using time-dependent exact diagonalization, we demonstrate that the holes in the CuO2 plane can be photoexcited into the charge reservoir layers at resonant wavelengths within a multiband Hubbard model. This orbitally selective photoinduced charge transfer effectively changes the in-plane doping level, which can lead to an enhancement of Tc near the 1/8 anomaly.

Author(s)
Ta Tang
Yao Wang
Brian Moritz
Thomas P. Devereaux
Journal Name
Physical Review B
Publication Date
November 23, 2021
DOI
10.1103/PhysRevB.104.174516